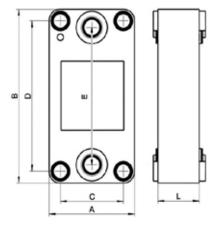


TD-Series | Brazed Plate Heat Exchangers

TRUE DUAL EVAPORATOR. TWO IN ONE.

DESIGN & FUNCTION


The TD True-Dual Evaporator: two evaporators or condensers in one device thanks to it having two separate refrigeration circulations and a central water/brine circulation.

The TD always ensures full efficiency even when operating only one refrigeration circulation. Also available as an AE version and in the ConBraze design.

The respective refrigeration circulation is only 100% in contact with the water/brine circulation in the True-Dual, it thereby ensuring full efficiency – even if the other refrigeration circulation is taken out of operation (partial load). The refrigerant flow is carried out on the basis of the diagonal flow principle, thereby ensuring an optimal degree of utilisation of the heat transfer surface. The evaporator includes the Delta Injection $^{\text{TM}}$ – distribution system.

ADVANTAGES

- **▶ HIGHEST DEGREE OF FLEXIBILITY**
- **▶ COMPACT DESIGN**
- **▶ WIDE RANGE OF APPLICATIONS**
- ► ROBUST DESIGN

ALWAYS A SUITABLE SOLUTION AT HAND

The brazed plate heat exchangers from

Kelvion offer tailor-made solutions for the widest range of application.

We configure the most economically favorable model for you from the wide range of available sizes and the numerous optional features. We adapt this with individually positioned connections to meet your specific requirements.

APPLICATION EXAMPLES:

- ► Heating water and industrial water systems
- Underfloor heating
- Subcoolers and condensers
- ► Economizer
- ► Refrigerant evaporators
- ▶ Oil coolers

Туре	Pressure	Dimensions					L-Dimension*	Weight*	Volume	Max. number of plates
	bar	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	[mm]	[kg]	(Litre/ Channel)	
WP 7M-TD	31	271	532	200	460	420	10,90+2,35xN	6,30+0,50xN	0.230	262
WP 9-TD	25	271	802	161	690	690	11,30+2,35xN	13,35+0,75xN	0.330	302
GKS 770H-TD	46/41	278	539	200	460	420	13,40+1,70xN	6,90+0,43xN	0.180	262
GKH 770H-TD	55/50	278	539	200	460	420	13,40+1,70×N	6,90+0,43×N	0.180	262
Also available as an advanced evaporator with a special "Delta Injection TM " distribution system for the refrigerant inlet.										
WP-AE 7M-TD	31	271	532	200	460	420	10,90+2,35xN	6,30+0,50xN	0.230	262
WP-AE 9-TD	25	271	802	161	690	690	11,30+2,35xN	13,35+0,75xN	0.330	302
GKS 770H-AE-TD	46/41	278	539	200	460	420	13,40+1,70×N	6,90+0,43xN	0.180	262
GKH 770H-AE-TD	55/50	278	539	200	460	420	13,40+1,70×N	6,90+0,43xN	0.180	262

*N = number of plates

SPECIFICATIONS

- ▶ Plate Material: Stainless steel AISI 316L / 1.4404
- ▶ Brazing Material: Copper

FEATURES

- ► Safety Chamber[™]
- ▶ Delta Injection[™]
- ► ConBraze-Design (model 770)

PERFORMANCE LIMITS

- ▶ Working temperature: -196°C to +200°C/-321°F to +392°F
- ▶ Working pressure: up to 55 bar

APPROVAL

- ▶ PED (CE)
- ► ASME VIII-1
- ▶ UL

We need following information to select your optimum heat exchanger

- ► Required temperature range
- ► Flow rates or required heat load
- ► Maximal permitted pressure drop
- ► Required working conditions

The specifications contained in this brochure are intended only to serve the non-binding description of our products and services and are not subject to guarantee. Binding specifications, especially pertaining to performance data and suitability for specific operating purposes, are dependent upon the individual circumstances at the operation location and can, therefore, only be made in terms of precise requests.